

Lecture III
Syntax

● Statements
● Output
● Variables
● Conditions
● Loops
● List Comprehension
● Function Calls
● Modules

Statements

● Statements normally end at the end of lines.
No semicolons are needed.

● If a line ends before all open brackets are
closed, the next line is considered to be part of
the same statement:

– x = [1, 2, 3,
 4, 5, 6]

● A statement can also be broken into several
lines using a backslash at the end of the line:

– X = 5 + \
 6

Output

● Python 2.x uses the print keyword for output.
By default, print sends the output to the
system's standard output, but this can be
redirected to files.

● Any object can be printed. The print statement
will always try to convert the object to be
printed into some string representation.

● Printing unicode strings may raise errors in
systems or IDEs that do not normally support
unicode.

Variables

● Everything in Python is an object, and all
objects that can be accessed are accessed
through variables.

● Even built-in values and functions, such as
True, False, len, range, etc. are variables and can
be assigned to:

– >>> print True

True

>>> True = 5

>>> print True

5

Variables

● Variables are created automatically when
assigned to, but can be deleted manually
using the del operator:

– >>> x = 5

>>> print x

5

>>> del x

>>> print x

ERROR

Variables

● Variables behave like references or pointers.
Assignment is simply changing a pointer. It is
NOT a copy:

– x = [1, 2, 3]

y = x

y.append(8)

y → [1, 2, 3, 8] x → [1, 2, 3, 8]

Variable Naming

● Variables start with a letter or underscore,
optionally followed by any number of letters,
digits or underscores.

● Variables names are case sensitive: var, Var,
vAr, and VAR are 4 different variables.

Variable Naming

● Variables starting with an underscore are
considered "private" and are harder (but not
impossible!) to access from outside their scope.

● Those starting with two underscores are "name
mangled". They appear to the outside word
under compiler-generated names.

● Those starting and ending with two underscores
are "reserved". They have special meaning to
Python and should be used only as prescribed.

Conditions

● The only simple conditional statement in
Python is if. It is used as follows:

– if condition1:

actions1

elif condition2:

actions2

elif condition3:

actions3

else:

actions4

Conditions

● The condition part can be any expression – it
will be automatically treated as a Boolean as
per the rules discussed previously.

● The actions part is a group of statements to
execute if the condition to which they belong is
True. If no statements are to be executed in
that block, use the pass (no-op) statement.

● The statements in each actions group should
all be indented on the same level, and at least
one more space than the if statement.

Loops

● Python has 2 looping statements: while and for.
● The while statement is used to repeat a

statement of group of statements as long as
some condition is true.

● The for statement is used to iterate over a an
"iterable" object. Sequences like lists are the
simplest and most common iterable objects. It
is similar to "for each" in other languages.

● Like the if statement, both while and for identify
their contents using indentation.

Loops

● Breaking out of a loop (either type) can be
done using the break statement, while skipping
the rest of the current iteration can be done
using continue.

● Unlike most other languages, both looping
statements in Python take an optional else
clause. This is executed once when the loop is
exited (when the condition is false in while loops
or when the iterable is exhausted in for loops).

List Comprehension

● There's a shortcut for looping over a list to
produce a new list. The syntax is:

– result = [expression for variable in list if
condition]

– list is the list whose elements we are
processing.

– variable is the name referring to the current
element.

– condition is a filtering condition expression.
– expression is an expression, usually using

variable.

List Comprehension

● Examples:
– x = [1, 2, -3, 8, 9]

– y = [i*i for i in x] y → [1, 4, 9,
64, 81]

– z = [num for num in x if num >= 0] z → [1, 2, 8, 9]

– u = [5 for number in x] u → [5, 5, 5, 5,
5]

– v = [x + [i] for i in x]
v → [[1, 2, -3, 8, 9, 1], [1, 2, -3, 8, 9, 2],
 [1, 2, -3, 8, 9, -3], [1, 2, -3, 8, 9, 8],
 [1, 2, -3, 8, 9, 9]]

Function Calls

● Functions are called in Python in a way similar
to most other languages, using the function
name followed by a list of zero or more
arguments between brackets.

● Functions can also be called on objects by
prefixing the call with the name of a variable
pointing to the object.

● Parameters can be positional or "keyword".
Keyword arguments can come in any order and
specify parameter name/value pairs.

Function Call Examples

● Ordinary calls:
– do_my_bidding()
– abs(x)
– say('hello')
– max(4, 3, 5, 2)

● Calls on objects:
– 'hello'.upper()
– 'hello'.strip().upper().replace('ll', 'l')
– [1, 2, 3].append(5)
– 'this is a word'.replace('word', 'sentence')

Function Call Examples

● Calls with keywords arguments:
– refresh(completely=True)
– [3, 1, 2].sort(reverse=True)
– [3, 1, 2].sort(key=my_key)
– dict(hello='goodbye', this='that')
– f(1, 2, 3, other=8)

– f(1, 2, other=8, 3) ← ERROR

● Note: keyword arguments can't come before positional
arguments.

Modules

● Modules are Python code libraries.
● Every Python script file can be used as a

module, and the standard distribution provides
a large library of such scripts.

● Modules can be imported into a Python script in
several ways, all using the import statement.

● Once imported, a module is an object.
● Module documentation is usually included with

the module. Use the help() function to access it!

Modules

● Modules in Python can be arranged into a tree
structure using "packages".

● A package is simply a folder containing Python
modules of other packages, in addition to a
special file called __init__.py.

● The __init__.py file is often left empty. However, it
can contain code to be executed when the
package is first imported.

Modules

● Importing examples:
– import os
– import xml.parsers.expat

● Imports the whole module and creates
a variable referring to it.

– from sys import *

● Imports everything defined in the module
and creates variables referring to the objects.

– from time import sleep, clock

● Imports specific objects from the module.

Modules

● Usage examples:
– import os

os.mkdir('C:/example')
print os.name

if os.path.exists('C:/Program Files'):
print 'Found the program files folder!'

– from os import *

mkdir('C:/example')
print name

if path.exists('C:/Program Files'):
print 'Found the program files folder!'

Modules

● Usage examples:
– import time

t = time.time()
time.sleep(2.5)
t2 = t - time.time()

print 'Milliseconds passed: ', t2

– from sys import version, platform

print 'Your Python version is:', version
print 'Your platform is:', platform

