

Lecture VI
Objects

● The OOP Concept
● Defining Classes
● Methods
● Instance, Class and Static Members
● Instance Variable
● Privacy
● Inheritance
● Calling Parent Methods

O O P

● Although Python is a multi-paradigm language,
object oriented programming is a key
component of its model.

● Everything is an object. Everything.
● Objects are simply data structures that map

attribute names to values (also objects).
● Unlike many other languages, Python does not

distinguish between data members and
methods much. A method is simply a data
member whose type is a bound function.

Defining Classes

● Classes are defined with the class keyword,
which opens a new scope and creates a new
type. Base class(es) can be specified in the
definition after the name between brackets.

– class Vehicle:
...

– class Car(Vehicle):
...

– class Boat(Vehicle):
...

– class AmphibianCar(Car, Boat):
...

Class Scope

● Note that everything inside of a class block is
ordinary Python code.

● You can have variable assignments, if
statements, etc.

● The code in this case is evaluated during the
definition, not during the usage of a class.

Class Scope

● Example:
– is_cat = True

my_age = 10

class Pet:
 if is_cat:
 def speak(self):
 print "Meow!"
 else:
 def speak(self):
 print "Roar!"

 talk = speak
 age = min(5, my_age)
my_pet = Pet()
print my_pet.age

Methods

● Methods are defined in classes the same way
they are defined in the global scope, using the
def keyword.

– class Vehicle:
def __init__(self):

self.fuel = 0

def move(self):
if self.fuel > 0:

self.fuel -= 1
print "I'm moving! I'm mooooviiiing!"

def refuel(self, fuel_amount):
self.fuel += fuel_amount

Methods

● By default, when a method defined inside a
class is called on an instance of that class, the
instance is passed in the first parameter. The
two variants below are identical:

– v = Vehicle()
v.move()

– v = Vehicle()
Vehicle.move(v)

● The convention is to name the first variable of
a class method self, though this is not
necessary and means nothing to Python itself.

Special Methods

● Python allows you to make your class better
integrated into the rest of the code by giving
you control of methods called on it by Python
itself in special cases.

● Special methods all start and end with two
underscores.

● The best known special method is the
constructor, called __init__.

● Other special methods exist to overload
operators, facilitate iteration, etc.

Instance Methods

● By default, methods defined in classes are
bound to the class's instances. They are called
from instances and receive these instances in
their first parameters.

● When you assign an instance method to a
variable, its parent instance is "bound" to it.
Example:

– v = Vehicle()
x = v.move
y = Vehicle.move
x() → Calls Vehicle.move(v)
y() → Error! Not enough parameters!

Class Methods

● In some cases you may want to create method
that take the class object itself rather than the
instance object as their first parameter. This is
done using the @classmethod decorator:

– class Animal:
def whoAmI(self):

print self

@classmethod
def whatAmI(self):

print self
a = Animal()
a.whoAmI()
a.whatAmI()

Static Methods

● Sometimes you want to define a method in a
class that is treated like a normal function and
is not passed any special parameters. This is
done using the @staticmethod decorator:

– class Animal:
def speak(self):

print '%s says: Hello!' % self

@staticmethod
def say(self):

print self
a = Animal()
a.speak() → Calls Animal.speak(a)
a.say() → Error! Not enough
parameters!

Instance Variables

● A method called from an instance can access
the instance's variables only through its first
parameter (e.g. self). This includes both data
attributes and other methods.

– class Animal:
def __init__(self, my_name):

self.name = my_name

def speak(self):
self.say(self.name)

def say(self):
print self

Privacy

● As we have mentioned previously, Python
does not have real privacy.

● There are conventions that specify that
variable starting with a single underscore are
private and two underscores as name-
mangled.

● This applies to class methods and data
attributes the same way it applies to modules.

Inheritance

● Python's inheritance model is very similar to
that of other OOP languages, but like C++ it
allows inheriting from multiple base classes.

● A child class inherits its parents' attributes, be
they data members or methods.

● Classes can have no parents, but in such case
it is suggested that they inherit from object.

● Parent classes do not need to be defined in
the same scope or file - any expression that
returns a class object will do.

Inheritance

● Example:
– class Animal:

def __init__(self, my_name):
self.name = my_name

class Cat(Animal):
def speak(self):

print '%s says: Meow!' % self.name

class Dog(Animal):
def speak(self):

print '%s says: Rruff!' % self.name

Inheritance

● Example:
– class A:

x = 'Hello'

class B:
z = 'Goodbye'

class Combined(A, B):
y = 'Wow!'

c = Combined()
print c.x
print c.y
print c.z

Method Overriding

● Python methods are always overridden by
child classes. For those coming from C++, we
can say that all Python methods are "virtual".

● When a base class calls a method that has
been overridden in by a child class *on an
instance of the child class*, the overridden
method is called.

Method Overriding

● Example:
– class Parent:

def greet(self):
self.say('Hello')

def say(self, what):
print 'Parent says:', what

class Child(Parent):
def say(self, what):

print 'Child says:', what

p = Parent()
c = Child()
p.greet() → prints "Parent says: Hello"
c.greet() → prints "Child says: Hello"

Calling Base Methods

● Child classes can call methods of their parents
even if they override these methods.

● This is done by calling the "unbound" version
of the method and manually passing the
current instance (self) as the first parameter:

– class Parent:
def greet(self):

print 'Hello'

class Child(Parent):
def greet(self):

Parent.greet(self)
print 'How are you?'

